[EN] ulab EP1 Getting Started

For ESP8266’s MicroPython to perform mathematical calculations like using Python’s numpy library, MicroPython with ulab must be installed. You can download firmware for ESP8266 HERE. For normal ESP32 and with additional PSRAM (SPIRAM).

This article is an introduction to ulab and an overview of the libraries within ulab for further application.

(Figure. 1 MicroPython+ulab firmware on RSP8266

[TH] ESP Class

บทความนี้เป็นการเข้าไปดูรายละเอียดของไฟล์ ESP.h ของ esp8266 Arduino เพื่อศึกษาหน้าที่ฟังก์ชันต่าง ๆ ซึ่งมีประโยชน์มากต่อการเขียนโปรแกรมเพื่อควบคุมการทำงานของไมโครคอนโทรลเลอร์ตัวนี้ เช่น การทราบจำนวนหน่วยความจำที่เหลืออยู่ หรือขนาดหน่วยความจำใหญ่ที่สุดที่สามรถจองได้ ซึ่งใช้ในการกรณีที่ต้องการเขียนโปรแกรมที่ใช้หน่วยความจำแบบพลวัติ (Dynamic) เพื่อเก็บรายชื่อ AP ที่พบทั้งหมด เป็นต้น โดยการผู้เขียนโปรแกรมสามารถใช้คลาสนี้ได้โดยตรงจากวัตถุ ESP

[TH] ESP8266 WebServer

บทความนี้เป็นการทดลองทำให้ไมโครคอนโทรลเลอร์ esp8266 เป็นเครื่องให้บริการเว็บเพื่อแสดงผลค่าอุณหภูมิและความชื้นจากเซ็นเซอร์ DHT11 โดยใช้ไลบรารีของ Adafruit ดังภาพที่ 1 และเมื่อกำหนดให้ไมโครคอรโทรลเลอร์ทำงานในโหมด SoftAP เพื่อให้ลูกข่ายหรือผู้ใช้เชื่อมต่อ WiFi เข้ามาหลังจากนั้นใช้ Browser เข้าไปยัง IP หมายเลข 192.168.4.1 ซึ่งเป็นหมายเลขของ esp8266

ภาพที่ 1 ตัวอย่างการการต่ออุปกรณ์สำหรับบทความ

[TH] ESP-01s + Relay

บทความนี้เป็นการประยุกต์ใช้โมดูล ESP-01s เชื่อมต่อกับโมดูล ESP-01/01s Relay v4.0 ดังภาพที่ 1 เพื่อสั่งงานให้รีเลย์ทำงาน โดยตัวอย่างโปรแกรมเป็นการเปิดและปิดรีเลย์ผ่านทางเว็บบราวเซอร์ซึ่งได้กล่าวถึงไปบ้างแล้วในบทความ WebServer แต่เพิ่มเติมคือเรื่องการดัก URL สำหรับนำมาเป็นอาร์กิวเมนต์ของการทำงาน

ภาพที่ 1 ตัวอย่างการทดลองในบทความ ESP-01s + Relay

[TH] ESP-01s

บทความนี้แนะนำโมดูล esp8266 ชื่อ ESP-01s ที่มีขาให้เชื่อมต่อ 8 ขา โดยอธิบายหน้าที่ของแต่ละขา การขยายวงจรเพื่อโปรแกรมชิพ (ตัวอย่างดังภาพที่ 1) การทำให้ชิพทำงาน และรวมถึงตัวอย่างการเขียนโปรแกรมเพื่อใช้งานโมดูลนี้ด้วย Arduino เพื่อให้เห็นภาพรวมในการพัฒนระบบซึ่งเป็นระบบที่ราคาน่ารักน่าสนใจระบบหนึ่ง

ภาพที่ 1 บอร์ดโปรแกรมชิพ ESP8266 ที่ใช้กับโมดูล ESP-01/ESP-01s

[TH] Arduino : ESP8266 GPIO

ในบทความนี้เป็นการเรียนรู้เรื่องของ GPIO (General Purpose I/O) หรือขาเชื่อมต่อกับอุปกรณ์ภายนอกของไมโครคอนโทรลเลอร์ด้วยภาษา C++ ของ Arduino โดยใช้ esp8266 เป็นชิพอ้างอิง ซึ่งสามารถนำไปประยุกต์ใช้กับ Arduino Uno, Arduino Mega หรือ STM32 ได้เช่นกัน ภายใต้บทความนี้อธิบายเรื่องของการกำหนดหน้าที่ของขา การนำสัญญาณออก และการนำสัญญาณเข้า

ภาพที่ 1 WeMos D1 กับ GPIO ที่ทำหน้าที่ต่าง ๆ

[TH] ESP8266WiFi

บทความนี้เป็นการเรียบเรียงข้อมูลที่เกี่ยวของกับคลาส ESP8266WiFi ซึ่งทำหน้าที่ด้านระบบ WiFi ของไมโครคอนโทรลเลอร์ ESP8266 โดยคลาสดังกล่าวนี้สามารถเข้าถึงผ่านทางวัตถุชื่อ WiFi ที่เป็นวัตถุที่ถถูกสร้างขึ้นสำหรับเข้าถึงโมดูลไร้สายของชิพ และต้องนำเข้าไฟล์ส่วนหัวชื่อ ESP8266WiFi.h

[TH] WiFiServer

หลังจากได้ศึกษาเรื่องของ ESP8266WiFi เพื่อควบคุมการทำงานของไมโครคอนโทรลเลอร์ให้เชื่อมต่อกับเครือข่ายไร้สายในแบบ STA และ SoftAP ไปแล้ว หลังจากนั้นได้เรียนรู้การใช้ WiFiClient เพื่อใช้ esp8266 เป็นโหนดลูกข่าย ในครั้งนี้เป็นเรื่องของ WiFiServer เพื่อให้ esp8266 ทำหน้าที่เป็นโหนดให้บริการหรือ Server โดยตัวอย่างในบทความนี้เป็นการสร้างระบบเครือข่ายภายในโดยใช้ esp8266 จำนวน 3 ตัวเพื่อทำหน้าที่เป็น SoftAP, Server และ Client ดังภาพที่ 1

[TH] WiFiClient

หลังจากได้กล่าวถึงคลาส ESP8266WiFi ไปในบทความก่อนหน้านี้ ครั้งนี้มาเรียนรู้เกี่ยวกับการใช้คลาส WiFiClient เพื่อเขียนโปรแกรมในฝั่งลูกข่ายที่เชื่อมโยงไปยังเครื่องให้บริการหรือ Server

[TH] SPI Bus

บทความนี้กล่าวถึงฟังก์ชันการใช้งานของบัส SPI ของเฟรมเวิร์ก Arduino เพื่อใช้กับ STM32F030F4P6, STM32F103C8, STM32F401, esp8266 และ esp32 ซึ่งการทำงานของบัสนี้ต้องการสายสัญญาณสำหรับสื่อสารระหว่างกันอย่างน้อย 3 เส้น คือ SCLK, MISO และ MOSI สำหรับทำหน้าที่ส่งสัญญาณนาฬิการะหว่างกันของผู้ส่งและผู้รับ ทำหน้าที่รับข้อมูลจากผู้ส่ง และใช้สำหรับส่งข้อมูลไปให้ผู้รับ

จากการใช้สายสัญญาณ 3 เส้นจะพบว่า สามารถส่งและรับข้อมูลพร้อมกันได้ ซึ่งแตกต่างกับการสื่อสารแบบบัส I2C ที่ใช้สาย SDA เพียงเส้นเดียวในการสื่อสาร ดังนั้น อาจจะกล่าวได้ว่า ด้วยความเร็วในการสื่อสารที่เท่ากัน บัสแบบ SPI จะรับและส่งข้อมูลได้โดยไม่ต้องรอสายสัญญาณว่าง ขณะที่ I2C จะต้องรอให้ว่างก่อน ด้วยหลักคิดนี้จึงทำให้ SPI รับ/ส่งข้อมูลได้รวดเร็วกว่า

นอกจากนี้ SPI ใช้วิธีการเลือกปลายทางที่ต้องการสื่อสารด้วยการสั่งให้ปลายทางรู้ด้วยการส่งสัญญาณไปที่ขา SS ของอุปกรณ์ปลายทาง ดังนั้น เมื่อเชื่อมต่อกับหลายอุปกรณ์จึงส่งผลให้ SPI ต้องการจำนวนขาในการทำงานที่มากกว่า ขณะที่ I2C ใช้การระบุคำแหย่งของอุปกรณ์ในการสื่อสารระหว่างกัน โดยยังคงใช้สาย SDA เพียงเส้นเดียวทำให้ประหยัดขาได้มากกว่า