This article discusses the use of PWM or Pulse Width Modulation modules under the machine class of MicroPython for esp8266 and esp32, along with an example of using PWM to dim the brightness of an LED and the generation of audio frequencies with PWM, which can be applied in the future.
This article is an introduction to Cytron’s Maker Pi PICO Board (Figure 1) equipped with a Raspberry Pi PICO microcontroller, as well as an expansion board with the basic equipment needed to practice programming and use, such as tubes, LED, memory card reader (micro SD-Card) or speakers, etc. In addition to the introduction of the board, this article discusses the installation and use CircuitPython which is Python that has adapted MicroPython for use with Adafruit and other third-party devices. For those interested in articles on MicroPython, we recommend consulting Dr. Rawat Siriphokaphirom’s website which has much more complete details than ours.
This article is an example of writing a game. Move the character to walk in the maze to collect flags that are randomly positioned as shown in Figure 1, where the character will walk in the specified channel and can’t penetrate the wall. With a warning sound when trying to walk in an impossible location and when walking in any direction will change the image of the character to turn the face to that direction. In addition, pressing A will randomize the position of the new flag, pressing B will randomize the player’s position, and pressing D will exit the program. The board for use is still dCoreML4M as before, let’s get started.
This article recommends using the esp8266 to read temperature and humidity from the DHT11 sensor, the voltage from the LDR sensor, received from the switch, and display via OLED with MicroPython’s Python language, this feature is the dCore-espWST board we are using (Which in the previous article we used the dCore-esp32WST with the same design, but using esp32, but the program code can still be used with the model board) and is a board for use in teaching IoT subjects. The prototype structure of the board is as shown in Figure 1, which is normally used with a battery power supply unit with a solar panel charging circuit.
This article is an implementation of the MicroPython file system using the esp8266 and esp32 microcontroller boards as an experimental board. The file system usage involves directories and files including connecting the device to be seen as a MicroPython file system, for example, connecting to an SD-Card to see it as a system directory, etc. It uses the os class to create, open, access, write data and disable files which will be part of MicroPython’s file class.
This article is a client/server programming example for a wireless network weather station (Client/Server Programming for Weather Stations via Wireless Networking) using two esp32 microcontrollers communicate over a wireless network. By setting the DHT22 and LDR sensor installed as a server working in AP mode and another esp32 microcontroller board working as a client and media via a custom port to read the temperature, humidity and digital values obtained from the LDR sensor as shown in Figure 1.
The ESP8266 and ESP32 boards are equipped with built-in WiFi connectivity. They can work in both self-application mode (Access Point) and client mode connected to an existing WiFi network or STA. Developers can set the device name (ESSID) or use the default name from the system as MicroPython-xxxx, where x represents the MAC Address of the device, the password is micropythoN (developers can assign new) and the IP Address (IP Address) is 192.168.4.1.
This article describes the working principle of a 2-channel 12-Bit Digital-to-Analog converter module that works with MCP4922 IC with the MicroPython of the ml4m board via the SPI bus to output the analog signal in the triangular waveform. Squares as shown in Figures 6 and 7 of the example in this article.